Fechar

@MastersThesis{Santos:2014:SiNu,
               author = "Santos, Luiz Henrique Guimar{\~a}es dos",
                title = "Estudo da intera{\c{c}}{\~a}o entre o disco protoplanet{\'a}rio 
                         e os planetas: simula{\c{c}}{\~o}es num{\'e}ricas",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2014",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2014-04-15",
             keywords = "exoplanetas, simula{\c{c}}{\~o}es num{\'e}ricas, disco 
                         protoplanet{\'a}rio, forma{\c{c}}{\~a}o planet{\'a}ria, 
                         exoplanets, numerical simulations, protoplanetary disk, planetary 
                         formation.",
             abstract = "Entender a intera{\c{c}}{\~a}o de planetas ainda embebidos no 
                         disco protoplanet{\'a}rio {\'e} crucial para conhecermos o 
                         processo de forma{\c{c}}{\~a}o de planetas, inclusive do Sistema 
                         Solar. Para tanto precisamos compreender as 
                         caracter{\'{\i}}sticas dos exoplanetas descobertos nas 
                         {\'u}ltimas duas d{\'e}cadas, seus m{\'e}todos de 
                         detec{\c{c}}{\~a}o e a estat{\'{\i}}stica destes planetas. 
                         Este trabalho apresenta um estudo te{\'o}rico mais aprofundado 
                         sobre as caracter{\'{\i}}sticas do disco protoplanet{\'a}rio e 
                         os torques que surgem sobre o planeta em sua intera{\c{c}}{\~a}o 
                         com o disco e os consequentes tipos de migra{\c{c}}{\~a}o 
                         orbital que podem ocorrer. Para verificar a teoria, realizamos 
                         simula{\c{c}}{\~o}es num{\'e}ricas utilizando o c{\'o}digo 
                         hidrodin{\^a}mico FARGO. Foram feitas seis s{\'e}ries de 
                         simula{\c{c}}{\~o}es com planetas de quatro massas distintas 
                         (tipo Terra, Super-Terra, Netuno e J{\'u}piter) inseridos no 
                         disco gasoso e com diferentes configura{\c{c}}{\~o}es de 
                         inicializa{\c{c}}{\~a}o. Buscando observar as 
                         caracter{\'{\i}}sticas f{\'{\i}}sicas da intera{\c{c}}{\~a}o 
                         disco-planeta estimamos a velocidade de migra{\c{c}}{\~a}o para 
                         diferentes perfis radiais de densidade superficial do disco. Como 
                         resultado marcante destas simula{\c{c}}{\~o}es encontramos a 
                         r{\'a}pida taxa de varia{\c{c}}{\~a}o radial dos planetas e uma 
                         massa limite na forma{\c{c}}{\~a}o dentro do disco, equivalente 
                         a aproximadamente 10 M\$_{Jup}\$, ap{\'o}s o qual o planeta cai 
                         rapidamente sobre sua estrela hospedeira. Al{\'e}m disto, para 
                         aumentar o tempo de exist{\^e}ncia do planeta dentro do disco, 
                         analisamos o comportamento da migra{\c{c}}{\~a}o na 
                         presen{\c{c}}a de saltos no perfil radial de densidade 
                         superficial do disco, verificando o seu travamento e um 
                         cen{\'a}rio que possibilitaria ao planeta se formar antes da 
                         dissipa{\c{c}}{\~a}o total do disco de acres{\c{c}}{\~a}o. 
                         Considerando os resultados das simula{\c{c}}{\~o}es e suas 
                         limita{\c{c}}{\~o}es, discutimos os poss{\'{\i}}veis 
                         cen{\'a}rios finais de sistemas planet{\'a}rios. Verificamos a 
                         possibilidade de um planeta gigante estimular o aparecimento 
                         destes saltos radiais de densidade e que a varia{\c{c}}{\~a}o 
                         radial da borda deste salto levaria o planeta em seus limites, 
                         podendo definir a sua {\'o}rbita final. ABSTRACT: To understand 
                         the interaction of planets still embedded in protoplanetary disks 
                         is crucial to the process of planet formation, including that of 
                         our own Solar System. For this purpose, we need to know the 
                         characteristics of exoplanets discovered in the last two decades, 
                         their detection methods, and statistics of these planets. This 
                         work presents a theoretical study more depth on the 
                         characteristics of the protoplanetary disk is needed as well as 
                         that of the torques that act on the planet in their interaction, 
                         and the resulting types of orbital migration that can occur. To 
                         verify the theory, we performed numerical simulations using the 
                         hydrodynamic code FARGO. Six series of simulations with planets of 
                         four different masses (Earth, Super-Earth, Neptune, and Jupiter 
                         types) embedded in a gaseous disk were done with different initial 
                         setups. A study of the physical characteristics of disc-planet 
                         interaction was made by estimating the migration velocity for 
                         different radial profiles of the disk surface density. As a result 
                         of these simulations we find the rapid rate of radial variation of 
                         planets and a mass limit the formation within the disk, equivalent 
                         to approximately 10 M\$_{Jup}\$, after which the planet falls 
                         quickly on its host star. Furthermore, to increase the lifetime of 
                         the planet within the disk, anaIyzed the migration behavior in the 
                         presence of jumps in the radial density profile surface of the 
                         disk, checking your lock and a scenario that would allow the 
                         planet is formed before the complete dissipation of the accretion 
                         disk. Considering the simulation results and its limitations, we 
                         discussed the possible final scenarios of planetary systems. We 
                         checked the possibility of a giant planet stimulate the appearance 
                         of these jumps radial density and radial variation of the edge of 
                         this planet would jump at their Iimits and can define its final 
                         orbit.",
            committee = "Jablonski, Francisco Jos{\'e} (presidente) and Valio, Adriana 
                         Benetti Marques (orientadora) and Winter, Othon Cabo and Martioli, 
                         {\'E}der",
         englishtitle = "Study of the interaction between the protoplanetary disk and the 
                         planets: numerical simulations",
             language = "pt",
                  ibi = "8JMKD3MGP5W34M/3GF4HGP",
                  url = "http://urlib.net/ibi/8JMKD3MGP5W34M/3GF4HGP",
           targetfile = "publicacao.pdf",
        urlaccessdate = "04 maio 2024"
}


Fechar